Sulcoflex[®] Trifocal: An adaptive solution towards DIVA (Distance Independent Visual Ability)

M. Amon

Head: Academic Teaching Hospital of St. John Chair: Sigmund Freud University; Vienna

ÖSTERREICH

Medizinische Fakultät der Sigmund Freud

Worlds first implantation: 30. 7. 2018

Duet-implantation: 40 eyes implantation in pseudophakic eye: 40 eyes (ongoing)

bilateral surgery follow-up: 6 months single surgeon postop refraction: 0

EU Trial: 68 eyes

Material and Design

Surgery

Results

Conclusion

KRANKENHAUS WIEN

Material and Design: The History of Sulcoflex[®]

BARMHERZIGE BRÜDER KRANKENHAUS WIEN

Uveal and Capsular Biocompatibility of Intraocular Implants

Hydrophilic Rayacryl: HEMA-MMA copolymer long term experience (>20 a)

Superb uveal biocompatibility

C. Abela, M. Amon, et al. Uveal and capsular biocompatibility after implantation of hydrophilic-acrylic, hydrophobic-acrylic and silicone intraocular lenses J Cataract Refract Surg 2002 28/1; 50-61

S. Richter-Müksch, G. Kahraman, M. Amon, et al. Uveal and capsular biocompatibility after implantation of sharp-edged hydrophilic acrylic, hydrophobic acrylic and silicone IOLs in eyes with PEX-syndrome J Cat Refract Surg 2007 33; 1414-1418

Additive IOLs available

Cristalens Reverso[®]

Rayner Sulcoflex[®]

1st Q[®]

The History of Sulcoflex®

- 1991 first publication on uveal and capsular biocompatibility
- 1998 idea and invention of a single-piece hydrophilic add-on IOL
- 2000 contact and cooperation with Rayner to design Sulcoflex
- 2004 first prototype
- 2007 worlds first implantation of Sulcoflex
- 2007 first presentation at ESCRS
- 2008 toric, multifocal and multifocal/toric (bifocal, refractive) IOLs
- 2018 worlds first implantation of the new trifocal Sulcoflex

Cellular invasion on hydrogel- and poly(methyl methacrylate) implants. An in vivo study M. Amon, et al. Journal of Cataract and Refractive Surgery, Vol. 17: 774-779. 1991 Uveal and capsular Biocompatibility of Intraocular Implants M. Amon. J. Cat. Refract. Surg. 27/2; 178-179: 2001 Sulcoflex: a new IOL concept for the pseuophakic eye M. Amon. Ophthalmology Times, 2007

Cadaver Eye Study:

- appropriate sulcus fixation
- appropriate centration
- minimal interaction with uveal tissue
- minimal interaction with in-the-bag IOL

Effect of interface refelection in pseuophakic eyes with an additional refractive intraocular lens

Optical bench study:

- same reflections from additional interfaces
- two IOLs similar optical quality to single IOL
- additional lightloss less than 1%

Jens Schrecker, Katja Zoric, Arthur Messner, Timo Eppig J Cat Refract Surg; 38/8; 1650-1656

Results: Rayner Sulcoflex®

- n: 200 eyes/ 12 years follow-up
- refr. mf, toric, mf/t, monofocal
- LFCM: < than after phaco</p>
- Iris trauma: 0
- Pigment dispersion: 0
- Interlenticular opacification: 0

Results: Rayner Sulcoflex®

- positive iris-distance: 100%
- positive central optic-distance: 100%
- optic capture: 0
- pupil ovalisation: 0
- UCVA: 0.9
- refraction: +/- 0.25dpt

Centration Study: Rayner Sulcoflex®

Decentration compared to the **center of the pupil** in mm max. decentration capsular bag: 1,05 mm max. decentration sulcus: 0,6 mm **Statistically significant better centration** of ciliary sulcus fixated IOLs

Prager F, Kahraman G, Wiesinger J, Wetzel B, Amon M. J. Cat. Refract. Surg. 2017

Specific indications "Dynamic refraction"

•pediatric cataract

(refractive exchange of supplementaty implant RESI)

silicone oilcorneal/scleral alteration

Conclusion after 12 years

Supplementary IOLs are effective for secondary enhancement of the surgical result and for primary "Duet implantation"

They represent a reversible or exchangeable technology for the future

Next step: create first diffractive trifocal add-on IOL

RayOne® Trifocal has fewer rings on the IOL optic surface for reduced potential visual disturbances and improved night vision.

Features:

- 16 diffractive steps / rings
- 4.5 mm diffractive zone
- > 4.5 mm monofocal, distance

Benefits:

- Reduces visual disturbances
- Developed to be less dependent on pupil size or lighting conditions
- Improves distance vision in mesopic condition

Comparison of Trifocal Technology

	PhysIOL FineVision	Zeiss AT LISA Tri	Alcon PanOptix	Rayner Trifocal	
					ARayr
Diffractive Technology	Diffractive Apodized Trifocal across full optic surface	Diffractive Trifocal up to 4.34 mm thereafter bifocal	Diffractive Trifocal up to 4.5 mm thereafter monofocal	Diffractive Trifocal up to 4.5 mm thereafter monofocal	
Diffractive Steps	26 diffractive steps	29 diffractive steps 0.0 D	15 diffractive steps	16 diffractive steps	
Diffractive Orders	0, 1, 2	0, 1, 2	0, 2, 3 (non-sequential)	-1, O, 1	
Light Loss 3.0 mm pupil	14%	14.3% (Ave.)	12%	11%	
Light Energy Split 3.0 mm pupil	49% D / 18% I / 34% N	50% D / 20% I / 30% N	42% D / 24% I / 22% N (includes 12% light loss)	52% D / 22% I / 26% N	
Optic Add Powers	+3.50 D Near add +1.75 D Intermediate add	+3.33 D Near add +1.66 D Intermediate add	+3.25 D Near add +2.17 D Intermediate add	+3.50 D Near add +1.75 D Intermediate add	
Reading Distance	37.5 cm 75.0 cm	40.0 cm 80.0 cm	42.0 cm 60.0 cm	37.5 cm 75.0 cm	

Comparison of optical performance and patient satisfaction with an Extended Range of Vision IOL and a trifocal IOL: A randomized prospective study

Guenal Kahraman Franz Prager Barbara Wetzel Clemens Bernhart Michael Amon

Dept. of Ophthalmology Academic Teaching Hospital of St. John Sigmund Freud Private University Vienna, Austria

Visual Acuity

Binocular Defocus Curve

Surgery

BARMHERZIGE BRÜDER KRANKENHAUS WIEN

IOL calculation for secondary implantation

R-vergence formula:

sph. equivalent of ametropia, K-values, ACD

 postop ametropia within +/- 7 D: hyperopia:

sph. equivalent x 1.5

myopia:

sph. equivalent x 1.2

IOL calculation for Duet-procedure

- in the bag IOL: monofocal, toric/monofocal any IOL-type (IOL neutral aspheric) emmetropia ("closest minus")
- Sulcoflex: distance 0 dpt
- routine biometry, no change of any constant

Results

Binocular defocus curve

RayOne tri Sulcoflex tri

Secondary enhancement

Rayner

Option of "finetuning" with 0.25 dpt steps All patient should get detailed information about potential dysphotopsia

EU TRIAL: CLINICAL RESULTS - SULCOFLEX TRIFOCAL

Multicentre evaluation assessing Visual acuity, contrast, defocus and patient satisfaction in pseudophakic patients with bilaterally implanted supplementary Sulcoflex Trifocal intraocular lenses

Prospective pilot study in pseudophakic patients

- Multicentre, 7 sites in Europe
- Multi-surgeon 7 surgeons
- Total of 68 eyes (34 patients)

FIRST RESULTS AND VISUAL PERFORMANCE

68 eyes (34 patients) underwent bilateral Sulcoflex Trifocal implantation

End Measures:

- Post operatative Subjective Refraction (SE, Sph, Cyl)
- Monocular and Binocular VA (LogMar):
 - Uncorrected Distance (UCVA) and Best Corrected Distance Visual Acuity (CDVA)
 - Uncorrected Near (UNVA) and Distance Corrected Near Visual Acuity (DNVA)
 - Uncorrected Intermediate (UIVA) and Distance Corrected Intermediate Visual Acuity (DNVA)
 - Contrast sensitivity with F.A.C.T charts
 - Defocus curve from -4.00 D to +2.00 D
 - Patient satisfaction with a self-administered questionnaire (Likert Scale)
 - Complications/AE

EXCLUSION CRITERIA:

- Previous ocular surgery
- Regular corneal astigmatism greater than 0.75 D
- Irregular astigmatism and corneal opacities
- Glaucoma with impairment of GCL and RNFL
- Macular diseases

RESULTS – SUBJECTIVE REFRACTION

• All eyes were within ± 1.00 D of emmetropia and 94% of eyes were within ± 0.50 D

RESULTS – VISUAL ACUITY

- All patients achieved Monocular UDVA of 0.1 LogMAR or better,
- 94% of patients acheived Monocular UIVA (70cm) of 0.1 LogMAR or better.
- 91% of patients achieved Monocular UNVA (40cm) of 0.1 LogMAR or better.

RESULTS – CONTRAST SENSITIVITY

- Post-op photopic contrast sensitivity was similar compared to pre-op in pseudophakic eyes
- Post-op mesopic contrast sensitivity was lower compared to pre-op in pseudophakic eyes at higher spatial frequency (> 6 cycle/degree)

RESULTS – PATIENT SATISFACTION

Do you find the following phenomena disturbing and troublesome? (Likert Scale Scoring 0 to 4)

RESULTS – PATIENT SATISFACTION

Spectacle Independence- Do you wear spectacles for distance/intermediate/ near vision?

RESULTS – PATIENT SATISFACTION

How satisfied are you with your near/intermediate/distance and overall vision? (Likert Scale Scoring)

Female: U. P.; 72a

Oktober 2015: uneventful IOL implantation both eyes

September 2018: uneventful, bilateral secondary enhancement

VA right eye: 0.7 (secondary cataract); Jg 1; YAG capsulotomy scheduled

VA left eye: 1.0; Jg 1

Conclusion

- Excellent visual acuity results across all distances
- All patients were satisfied with their distance, intermediate and near vision
- No surgical and postop-complications
- Preliminary data of EU-studie support our data
- Results are comparable to trifocal "in the bag" IOLs at least

But:

• Supplementary IOLs offer an adaptive option

BARMHERZIGE BRÜDER ÖSTERREICH

Conclusion

Main indications today:

In phakic patients: Multifocal Duet-implantation

In pseudophakic patients: Multifocal enhancement Biometrical surprise

Conclusion

- Option of finetuning (0.25 dpt)
- Option of specific selection of IOL-combination (asphericity, torus, material for bag-IOL,...)
- Option of exchange for future IOL-solutions
- Reversibility, exchangeability: wider spectrum of indications
- Increased explantation-rate due to different technology
- Early explantation: photopic phenomena, fine-tuning
- Late explantation: AMD, DME,...

